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Abstract—In this paper we propose a framework of topic
modeling ensembles, a novel solution to combine the models
learned by topic modeling over each partition of the whole
corpus. It has the potentials for applications such as distributed
topic modeling for large corpora, and incremental topic mod-
eling for rapidly growing corpora. Since only the base models,
not the original documents, are required in the ensemble, all
these applications can be performed in a privacy preserving
manner. We explore the theoretical foundation of the proposed
framework, give its geometric interpretation, and implement it
for both PLSA and LDA. The evaluation of the implementa-
tions over the synthetic and real-life data sets shows that the
proposed framework is much more efficient than modeling the
original corpus directly while achieves comparable effectiveness
in terms of perplexity and classification accuracy.

Keywords-Topic model, Ensemble

I. INTRODUCTION

Recent years have witnessed an increasing interest on
ensemble learning in the area of data mining and machine
learning. The idea of ensemble is to combine the base
models from multiple local data nodes to achieve the similar
(or even better) effectiveness with the model learned from
the whole data. Ensemble learning was firstly introduced
to supervised methods, i.e. ensembles of classifiers [1].
Then, unsupervised ensemble learning techniques [2] were
proposed as clustering ensembles which reconciles multiple
clustering results of a data set into a single consolidated clus-
tering result, without accessing the original data. Illuminated
by the success of ensemble learning for classification and
clustering, in this paper we explore how to apply ensemble
learning to topic modeling.

As a generalization of clustering, topic modeling, such
as Probabilistic Latent Semantic Analysis (PLSA) [3] and
Latent Dirichlet Allocation (LDA) [4], [5], has been suc-
cessfully used for analyzing sparse vectors of count data,
such as bag of words for documents, bag of features for
images, or bag of activities for human daily routines. It
provides a compact and interpretable statistical summary
for the original corpus. However, due to the fast evolution
of information technology in the past decade, applying
topic modeling to real applications faces the following new
challenges.
∙ Large scale data: Text data sets such as Web pages

are growing overwhelmingly large. Topic modeling on such

large scale data might be intractable due to memory and
time issues.
∙ Incremental data: Corpora such as news articles grow

rapidly over time. Traditional topic modeling needs to access
the entire corpus, including the old and new data, for model
update. However, it is really time-consuming to perform
topic modeling from the scratch, and also achieving the old
data consume lots of storage.
∙ Privacy concern: When the data for processing are

distributed separately over multiple organizations, we may
face privacy concern. Namely, the participating organizations
would not like to reveal their original data to public.

Motivated by these challenges we propose a novel ensem-
ble framework, so-called topic modeling ensembles which
integrates multiple base topic models, learned from the
disjoint sub-corpora , into a single ensemble topic model.
This framework helps to address the challenges above.
More specifically, two of the application scenarios for topic
modeling ensembles are
∙ Distributed topic modeling: Based on topic modeling

ensembles, we could learn base topics models from each
data node and then combine these base topic models for
the entire data set. Different from previous distributed topic
modeling techniques, we do not need any communication
during the learning of base models.
∙ Incremental topic modeling: In the scenario of incre-

mental topic modeling, data could be regard as distributed
in different time slices. We can learn a base topic model
for the new time slice and then combine it with other base
topic models learned from the past time slices. Note that in
incremental topic modeling we need only achieve the base
topic models rather than the original data, which greatly
saves the storage.

It is worth mentioning that only the base topic models
(the statistic summary of the local data), rather than the
original data, are accessed by topic modeling ensembles.
Thus, it naturally preserve the privacy of the participating
organizations when the original data are not allowed to be
disclosed. Note also that it is not required that the base
topic models be learned from the disjoint sub-corpora of
the whole data. This is only required in this study for the
applications of distributed topic modeling and incremental
topic modeling. What we need are only based topic models,
no matter where they come from. Actually, some prelimi-
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nary experiments show that if we perform topic modeling
methods with different parameters and different initialization
techniques over the whole corpus, the ensemble of these
resultant base topic models may improve the effectiveness
of each base model.

The main contributions of the paper include:
∙ We propose the framework of topic modeling ensem-

bles and theoretically analyze the relationship between the
ensemble approach and the direct approach.
∙ We implement the proposed framework for the two most

popular topic models: PLSA and LDA.
∙ We conduct extensive experiments to evaluate the pro-

posed ensemble approach using both synthetic and real-life
benchmark data sets. The experimental results demonstrate
the scalability of the proposed work with comparable per-
formance on effectiveness.

II. TOPIC MODELING ENSEMBLES

In this section we give the basic theoretical analysis,
which illuminates topic modeling ensembles. Before de-
scribing the ensemble approach, we briefly describe PLSA
first. PLSA assumes that each document 𝑑 ∈ {1, 2, 3, ..., 𝐷}
is generated by a mixture of topics 𝑡 ∈ {1, 2, ..., 𝑇}, where
a topic is represented as a multinomial distribution over
words 𝑤 ∈ {1, 2, ...,𝑊}. Then the learning of PLSA is
to find appropriate 𝑡’s that decompose the joint probability
distribution of 𝑑,𝑤 as follows:

𝑝(𝑤, 𝑑) = 𝑝(𝑑)𝑝(𝑤∣𝑑) = 𝑝(𝑑)
∑
𝑡

𝑝(𝑡∣𝑑)𝑝(𝑤∣𝑡) (1)

In this work, we assume the original corpus is separated
into sub-corpora. Suppose each document corresponds to
only one sub-corpus, we can denote 𝑐𝑑 as the ID of the sub-
corpus that contains 𝑑. Then we can learn a topic model
separately on each sub-corpus 𝑐.

𝑝(𝑤, 𝑑∣𝑐) = 𝑝(𝑑∣𝑐)𝑝(𝑤∣𝑑, 𝑐) = 𝑝(𝑑∣𝑐)
∑

𝑧∈𝒵𝑐𝑑

𝑝(𝑧∣𝑑)𝑝(𝑤∣𝑧)

(2)
where 𝑧 ∈ 𝒵𝑐 is the locally learned base topic.

Note that 𝒵𝑐 with different 𝑐 are disjoint. We can integrate
all the base topics into 𝒵 =

∪
𝑐 𝒵𝑐. Now, if we consider the

variable 𝑧 ∈ 𝒵 as pseudo document we can apply another
topic modeling over the co-occurrence of 𝑧 and 𝑤 in the
whole corpus,

𝑝(𝑤, 𝑧) = 𝑝(𝑧)𝑝(𝑤∣𝑧) = 𝑝(𝑧)
∑
𝑦

𝑝(𝑦∣𝑧)𝑝(𝑤∣𝑦) (3)

To avoid ambiguity we call 𝑦 in the above equation
ensemble topic, and the topics directly learned from the
entire original corpus global topic, denoted by 𝑡 as shown in
(1). Exploring the relation among global topics, base topics
and ensemble topics, we have the following proposition.

Proposition 1. Given base topic 𝑧 which satisfies (2), and
ensemble topic 𝑦 which satisfies (3), We have

𝑝(𝑤, 𝑑) = 𝑝(𝑑)
∑
𝑦

𝑝(𝑦∣𝑑)𝑝(𝑤∣𝑦) (4)

where
𝑝(𝑦∣𝑑) =

∑
𝑧

𝑝(𝑧∣𝑑)𝑝(𝑦∣𝑧) (5)

Proof: . See in [6]

Comparing (4) and (1), Proposition 1 actually says that if
Equations (2) and (3) hold the ensemble topic 𝑦 represented
by 𝑝(𝑤∣𝑦) can be viewed as a solution to the topic modeling
over the original whole corpus. This motivates us to propose
the framework of distributed topic modeling ensembles as
follows.

Phase 1. Base Topic Modeling: Learn base topics
𝑝(𝑤∣𝑧, 𝑐) from each sub-corpus 𝑐.

Phase 2. Ensemble Topic Modeling: Learn ensemble
topics 𝑝(𝑤∣𝑦) over the co-occurrence of 𝑧 and 𝑤 in the whole
corpus. Here, 𝑧 is any topic in the union of all the base
topics.

Phase 3. Inference: Take 𝑝(𝑤∣𝑦) as a resulting topic
model and inference 𝑝(𝑦∣𝑑) for each document 𝑑. Phase 3 is
optional because 𝑝(𝑦∣𝑑) can also be directly calculated via
(5).

Note that Equations (2) and (3) only indicate the ensemble
topic modeling are a solution for the entire corpus, but
they give no demonstration on how “good” it is. In Section
III-C we will show how good this solution is in terms of
maximizing data likelihood.

III. IMPLEMENTATION FOR PLSA

In the previous section we take PLSA as an example to
motivate the proposed framework. In this section we will
detail the implementation of this framework for PLSA and
give the theoretical analysis to validate our approach.

A PLSA model can be learned via a standard EM algo-
rithm which maximizes the following log-likelihood.

ℒ𝑡:𝑑 =
∑
𝑑

∑
𝑤

𝑛(𝑑,𝑤)

[
log 𝑝(𝑑)

∑
𝑡

𝑝(𝑡∣𝑑)𝑝(𝑤∣𝑡)
]

(6)

where 𝑛(𝑑,𝑤) is the occurrence number of 𝑑 and 𝑤. The
update formulas used in the EM algorithm of parameter
learning is shown as follows.

E-step:
𝑝(𝑡∣𝑤, 𝑑) ∝ 𝑝(𝑡)𝑝(𝑡∣𝑑)𝑝(𝑤∣𝑡) (7)

M-step:
𝑝(𝑤∣𝑡) ∝ ∑

𝑑 𝑛(𝑑,𝑤)𝑝(𝑡∣𝑤, 𝑑)
𝑝(𝑡∣𝑑) ∝ ∑

𝑤 𝑛(𝑑,𝑤)𝑝(𝑡∣𝑤, 𝑑)
𝑝(𝑡) ∝ ∑

𝑑,𝑤 𝑛(𝑑,𝑤)𝑝(𝑡∣𝑤, 𝑑)
(8)
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Figure 1. Geometric interpretation.

A. PLSA Ensembles

In the proposed framework, the base topics are learned via
maximizing the following log-likelihood for each sub-corpus
𝑐:

ℒ𝑧,𝑑𝑐
=

∑
𝑑∈𝒟𝑐

∑
𝑤

𝑛(𝑑,𝑤)

[
log 𝑝(𝑑)

∑
𝑧∈𝒵𝑐

𝑝(𝑧∣𝑑)𝑝(𝑤∣𝑧)
]

(9)
By replacing 𝑡 with 𝑧 in (7) and (8), we can learn 𝑝(𝑤∣𝑧)

and 𝑝(𝑧∣𝑑) in a sub-corpus. Then, given 𝑝(𝑤, 𝑧) over the
whole corpus, we can learn the ensemble topics 𝑦’s by
maximizing the following log-likelihood:

ℒ𝑦:𝑧 =
∑
𝑧

∑
𝑤

log 𝑝(𝑤, 𝑧)

=
∑
𝑧

∑
𝑤

log

{
𝑝(𝑧)

∑
𝑦

[𝑝(𝑦∣𝑧)𝑝(𝑤∣𝑦)]
}

(10)
Specifically, by replacing 𝑡, 𝑑 with 𝑦, 𝑧 respectively in (7)
and (8), we can learn 𝑝(𝑤∣𝑦) and 𝑝(𝑦∣𝑧) by the EM
algorithm. This time 𝑧 is used as pseudo document. In this
EM process the occurrence number 𝑛(𝑤, 𝑧) can be replaced
by 𝑝(𝑤, 𝑧), where

𝑝(𝑤, 𝑧) = 𝑝(𝑤∣𝑧)𝑝(𝑧) = 𝑝(𝑤∣𝑧)
∑
𝑑

𝑝(𝑧∣𝑑)𝑝(𝑑).

and 𝑝(𝑑) is proportional to 𝑑’s length, 𝑝(𝑤∣𝑧), 𝑝(𝑧∣𝑑) are
obtained from the base topics.

The complexity of EM algorithm for learning global
topics is O(𝐷𝑊𝑌 ) while if the learning of base topics is
performed in parallel, the complexity of PLSA ensembles is
max𝑐 [O(𝐷𝑐𝑊𝑍𝑐)] +O(𝑍𝑊𝑌 ).

B. Geometric Interpretation

Topic modeling has an elegant geometric interpretation
[3], [4], [5] as shown in Figure 1(a). In topic modeling, a
document and a topic can be both represented as distribu-
tions over words, say 𝑝(𝑤∣𝑑) and 𝑝(𝑤∣𝑡), which can both be
viewed as points on the (𝑊 − 1)-simplex (word simplex).

The 𝑇 points corresponding to the topics can span another
(𝑇 − 1)-simplex (topic simplex). Then, the documents are
projected onto the topic simplex via maximizing (6). We
set 𝑊 = 3 and 𝑇 = 2 in the illustrative example of Figure
1(a) where the word simplex is a triangle and the documents
and topics are represented as points in this triangle. We use
120 points corresponding to 120 documents with 𝑝(𝑤∣𝑑) as
the coordinates. The two black points corresponding to the
topics span a 1-simplex (a line segment).

We can also perform topic modeling ensemble as follows.
In Phase 1 we learn a base topic simplex on each of the three
sub-corpora, which are represented with different markers in
Figure 1(b). The resultant three topic simplices, represented
by the three line segments with six vertices, are also shown
in Figure 1(b). In this phase all the documents actually are
projected onto the corresponding base topic simplices. In
Phase 2, instead of considering their image points in the
base topic simplices we use the vertices of the base topic
simplices as the pseudo documents to learn the ensemble
topics via maximizing (10). Here, we have six vertices for
the three base topic simplices. As we can see, the learned
ensemble topic simplex in Figure 1(c) is close to the global
topic simplex in Figure 1(a). Next, we will theoretically
show that using only the vertices of the base topic simplices
in Phase 2 is reasonable.

C. Discussions on the Approximate in Topic Modeling En-
semble

In Phase 2, rather than consider all the documents’ image
points in the base topic simplices, we propose to maximize
the log-likelihood in (10), which only use the vertices of the
base topic simplices. The following proposition shows that
this approximate is reasonable.

Proposition 2. Let ℒ𝑦:𝑑 denote the log-likelihood based on
the ensemble topics, where

ℒ𝑦:𝑑 =
∑
𝑑

∑
𝑤

𝑛(𝑑,𝑤)log 𝑝(𝑑)
∑
𝑦

𝑝(𝑦∣𝑑)𝑝(𝑤∣𝑦) (11)

Then, maximizing ℒ𝑦:𝑧 in (10) is equivalent to maximize a
lower bound of ℒ𝑦:𝑑.
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Proof: See in [6]

It indicates that the EM algorithm for the ensemble pro-
cess actually maximize a lower bound of the log-likelihood
over the whole corpus. In this sense we argue that the output
from the ensemble process is a good solution. The experi-
ments in Section V further demonstrate that the effectiveness
of this approximation is acceptable in practice.

IV. IMPLEMENTATION FOR LDA

In this section we will detail how to implement this
ensemble framework for LDA.

When we regard 𝑝(𝑡∣𝑑) and 𝑝(𝑤∣𝑡) as random variables
and assume they have Dirichlet prior with hyper-parameters
𝛼 and 𝛽 respectively, we get the LDA model. We then
denote the posterior of 𝑝(𝑡∣𝑑) and 𝑝(𝑤∣𝑡) as 𝑝(𝑡∣𝑑;𝛼) and
𝑝(𝑤∣𝑡;𝛽). In this paper we consider the LDA model with
prefixed 𝛼 and 𝛽 and the posteriors 𝑝(𝑡∣𝑑;𝛼) and 𝑝(𝑤∣𝑡;𝛽)
could be estimated via Collapsed Gibbs Sampling (CGS) [5].
Specifically, the input data for CGS are two aligned vectors:[

d
w

]
=

[
𝑑1, ..., 𝑑𝑛
𝑤1, ..., 𝑤𝑛

]
where 𝑛 denotes total number of tokens, 𝑑𝑖 ∈ {1, 2, ..., 𝐷}
and 𝑤𝑖 ∈ {1, 2, ...,𝑊}. The tuple (𝑑𝑖, 𝑤𝑖) denotes an
occurrence of word 𝑤𝑖 in document 𝑑𝑖. The output of
CGS is another vector t = 𝑡1, 𝑡2, ..., 𝑡𝑛, where each 𝑡𝑖 ∈
{1, 2, ..., 𝑇} is a topic assignment for tuple (𝑑𝑖, 𝑤𝑖). The
states in t are randomly initialized. Then, the assignment of
each 𝑡𝑖 is iteratively updated by sampling from a distribution
as follows:

𝑝(𝑡∣t¬𝑖, 𝑤𝑖, 𝑑𝑖, 𝛼, 𝛽)

∝ 𝑂𝑊𝑇
𝑤𝑖𝑡 − 1 + 𝛽∑𝑊

𝑤=1(𝑂
𝑊𝑇
𝑤𝑡 + 𝛽)− 1

× 𝑂𝐷𝑇
𝑑𝑖𝑡

− 1 + 𝛼∑𝑇
𝑡=1(𝑂

𝐷𝑇
𝑑𝑡 + 𝛽)− 1

(12)
where 𝑂𝐷𝑇

𝑑𝑡 = #(𝑑, 𝑡), 𝑂𝑊𝑇
𝑤𝑡 = #(𝑤, 𝑡) and ¬𝑖 denotes the

exclusion of the current one.
After a sufficient number of sampling iterations, the

posterior of 𝑝(𝑡∣𝑑;𝛼) and 𝑝(𝑤∣𝑡;𝛽) could be estimated based
on 𝑂𝐷𝑇 , 𝑂𝑊𝑇 , 𝛼 and 𝛽.

A. LDA Ensembles

We apply CGS in LDA ensembles as illustrated in Figure
2. In Phase 1 for base topic modeling, we split the original

[d,w]𝑇 into distributed segments (indicated with different
colors), each of which corresponds to the data from a sub-
corpus. Then, for each segment we learn the base topics
𝑧 ∈ 𝒵𝑐 separately. In Phase 2 for ensemble topic modeling,
we combine the segments of base topics from all the sub-
corpora into a single vector z and take [w, z]𝑇 as input for
another CGS, where we can regard 𝑧 as pseudo document
again. Note that the base topics with different colors should
be indexed distinctly. The output from Phase 2 is the vector
of y based on which it is easy to get the ensemble topics
𝑝(𝑤∣𝑦).
B. Rescale on Co-occurrence Number

It is clear that the complexity of CGS is proportional to
the number of tokens in the corpus, namely

∑
𝑑,𝑤 𝑂𝐷𝑊

𝑑𝑤 =
∣d∣ = ∣w∣ = ∣z∣ = ∣y∣. Thus, Phase 2 has the same
complexity with that in topic modeling over the whole
corpus. To achieve better efficiency in Phase 2, we can
obviously employ PLSA or the variational EM proposed in
[4] over 𝑂𝑍𝑊 , whose complexity are both O(𝑍×𝑊 ). Here,
we propose another strategy to accelerate the CGS process
in Phase 2.

After Phase 1, we observe that due to
∑

𝑧,𝑤 𝑂𝑍𝑊
𝑧𝑤 =∑

𝑑,𝑤 𝑂𝐷𝑊
𝑑𝑤 and 𝑍 ≪ 𝐷, some counts in 𝑂𝑍𝑊 are

very large. We can rescale 𝑂𝑍𝑊 via ⌈𝑂𝑍𝑊

𝑅 ⌉ as the input
for Phase 2 with less tokens, where 𝑅 is a rescaling
coefficient. Then, if the learning of base topics is con-
ducted in parallel the total complexity of Phases 1 and 2
is max𝑐[O(

∑
𝑧∈𝒵𝑐,𝑤

𝑂𝑍𝑐𝑊
𝑧𝑤 )] + O(

∑
𝑧,𝑤⌈𝑂𝑍𝑊

𝑧𝑤

𝑅 ⌉). We set
𝑅 = 2𝐶 in our experiments and find in experiments
that this setting significantly improves the efficiency of the
ensemble topic modeling phase while achieves acceptable
effectiveness on the large data corpus.

V. EXPERIMENTAL RESULTS

In this section with various data sets we evaluate the
ensemble framework for distributed topic modeling. For
each data set we randomly divide it into several sub-corpora,
lean the base topics over the sub-corpora separately, and then
combine these base topics by ensemble. Incremental topic
modeling can be viewed as a special case of distributed topic
modeling, thus is not evaluated individually.

We set different topic numbers to be the same, i.e. 𝑇 =
𝑌 = 𝑍𝑐. In the EM procedures for PLSA, we terminate the
iteration at round 𝑝, if the relative change of log-likelihood
Δℒ/ℒ(𝑝−1) < 10−4. In the CGS procedure of LDA, we set
𝛼 = 50/𝑇 and 𝛽 = 0.01 if there is no extra declaration, and
run 100 iterations for each algorithm.

A. Illustrative Examples on Synthetic Data

In Section III-B, we’ve illustrated the implementation for
PLSA ensembles by simplex examples. Here we borrow
the bar graphical example [5] for LDA ensembles. In this
synthetic data set, documents and topics are represented by
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Figure 3. Illustration with bar example.

images, each containing 9 pixels in a 3×3 square. These 9
pixels can be viewed as words and the intensity of a pixel in
a image encodes the frequency of the corresponding word
in a document or the word’s weight in a topic. We firstly
give 6 topics (Figure 3(a)) corresponding to horizontal and
vertical bars and then generate 600 documents (Figure 3(b))
following a standard LDA generative process based on these
6 topics with 𝛼 = 1, 𝛽 = 1 and for each document
we sample 100 words. We can learn the global topics
(Figure 3(c)) via apply CGS directly to all the 600 pseudo
documents. Comparing panel (c) to panel (a) of Figure 3,
we see the learned topics approximately reveal the underline
structure of these documents.

Now we apply the LDA ensembles to this synthetic data
set. In the base topic modeling phase (Arrow 3 in Figure
3), we split the documents into 3 parts, and then learn 3
sets of base topics (Figure 3(d)). There are totally 3×6 =
18 based topics. In the ensemble topic modeling phase, we
treat these base topics as another set of pseudo documents
and then learn the ensemble topics as shown in Figure
3(e). We show both the results with or without the rescale
strategy introduced in Section IV-B. Compare these results
with directly learned topics in Figure 3(c) and the ground
truth topics in Figure 3(a), we can see the ensemble topics
are even better than the topics directly learned from the
original data. This superior result is based on the fact that the
number of instances in each sub-corpus is sufficient enough
to get the good base topics. This superiority will not hold
for all real-life applications and in the experiments on real-
world document sets we only demonstrate that the proposed
distributed ensemble framework can approximate the non-
distributed topic modeling.

B. Experiments on Real-life Data

In this section, evaluate the proposed topic modeling en-
sembles over three real-life data set for document modeling
and document classification task.

1) Data Sets and Evaluation Metrics: The real-life data
sets are generated from three text sources1. The Sector
data set is a collection of web pages classified into a class
hierarchy and we use the 12 classes in the 2nd level. The
Newsgroup data set is a text collection of about 20,000
UseNet postings from 20 newsgroups considered as 20
classes.For each data set, we choose 2,000 words2 with
highest information gains according to the known categories.
Note that the ranking of these three data sets in the increase
order of corpus size is: Sector, Newsgroup.

Perplexity is a common measure for the document model-
ing effectiveness which evaluates the model generalization
performance on a held-out document set. Formally, for a
test corpus with 𝑀 documents, the perplexity is defined as
Perplexity(𝐷test) = 𝑒𝑥𝑝

{
−

∑𝑀
𝑑=1 log𝑝(w𝑑)∑𝑀

𝑑=1 𝑁𝑑

}
Note that smaller perplexity means better performance
2) Results in Document modeling: We evaluate the ef-

fectiveness and efficiency of document modeling over two
dimensions: number of topics and number of sub-corpora,
and train the following models: 1) PLSA for non-distributed
PLSA; 2) PLSA-E for PLSA ensembles; 3) LDA for non-
distributed LDA; 4) LDA-E with rescale for LDA ensembles
with the rescale step and 5) LDA-E without rescale for that
without the rescale step.

Figure 4 illustrates the perplexity results (upper row) and
the time costs (lower row) with respect to different numbers
of topics (increasing 𝑇 from 60 to 240 by 20). For each
𝑇 , we do five-fold cross validation and plot the mean value
together with a error bar for the standard deviation. It shows
that the perplexity values strictly decrease along the increase
of topic numbers 𝑇 . Meanwhile, we plot the absolute time
costs for the models. The efficiency and scalability of the
ensemble methods are significantly better than applying
topic modeling directly to the original corpus.

1http://www.cs.umass.edu/∼mccallum/code-data.html
2We use such small vocabularies that the non-distributed algorithms can

work on large corpus in a tolerable time.
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Table I
RESULTS FOR DOCUMENT CLASSIFICATION.

sector newsgroup
C=5 C=10 C=5 C=10

Raw 0.74±0.07 0.74±0.07 0.91±0.05 0.91±0.05
LDA 0.86±0.05 0.86±0.05 0.95±0.05 0.95±0.05
LDA-E 0.84±0.05 0.83±0.05 0.94±0.05 0.94±0.05
LDA-ER 0.84±0.05 0.84±0.05 0.94±0.05 0.94±0.05
PLSA 0.85±0.05 0.85±0.05 0.94±0.05 0.94±0.05
PLSA-E 0.85±0.05 0.85±0.05 0.94±0.05 0.94±0.05

Figure 5 shows the impact of increasing the number 𝐶 of
sub-corpora. From these results we can see the perplexity
values of the ensemble methods, except LDA-E with rescale,
are stable along with the increase of sub-corpora number.
It shows that the rescale process sacrifices more when the
sub-corpora number increases. It indicates again that our
ensemble methods prefer large data sets. We also measure
the speed-up for the ensemble methods as plotted in the right
column of Figure 5.

3) Results in Document Classification: Since all the
corpora we used in experiments have class labels we can
conduct binary classification problems on them. For a corpus
with 𝐾 classes, we can conduct 𝐾(𝐾 − 1)/2 binary classi-
fication problems, and the values of 𝑝(𝑡∣𝑑) over different
topics can be viewed as the features of the document 𝑑
for classification. So we can compare the classification
accuracy over the topic spaces from different topic modeling
methods with that over the original bag-of-words space as
the baseline. Logistic regression is adopted as the binary
classifier. We rank all the classification problems from a
corpus in the increase order of their accuracy from the bag-
of-words baseline. All these results are included in Table
I where two values of sub-corpora number, 𝐶 = 5 and
𝐶 = 10, are tested. For each corpus we also give the mean
accuracy values together with standard deviation. It shows
that the ensemble methods of topic modeling are very close
to those directly modeling the original corpora in terms of
classification accuracy. We also find that the accuracy values
do not significantly decrease when we increase the sub-
corpora number from 5 to 10.

VI. CONCLUSIONS

In this paper we propose topic modeling ensembles, an
novel solution to combine the base topic models from
disjoint subsets of a corpus. The proposed framework has
no communication overhead in the distributed computing
phase and is easy to implement. We apply our approach to
both PLSA and LDA with the discussion of the theoretical
foundation. The experiments validate the effectiveness and
efficiency of the proposed framework.
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Figure 4. Results with varying number of topics.
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